
Recursion, Efficiency, and
the Time-Space Trade Off;

Selection Sort and Big-Oh

Checkout Recursion2 project from SVN

 What is a recursive method?

 Answer: A method that calls itself but on a “simpler” problem, so
that it makes progress toward completion

 When to use recursive methods?

◦ Implementing a recursive definition
n! = n x (n-1)!

◦ Implementing methods on a
recursive data structure, e.g.:

Size of tree to the right is the sum
of sizes of subtrees B, C, D, E, plus 1

◦ Any situation where parts of the whole
look like mini versions of the whole

 Folders within folders on computers

 Trees

 Pros: easy to implement, easy to understand code, easy to
prove code correct

 Cons: takes more space than equivalent iteration
(because of function calls)

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 The nth Fibonacci number F(n) is defined by:

F(n) = F(n-1) + F(n-2)for n > 1

F(1) = F(2) = 1

 Why does recursive Fibonacci take so long?!?

◦ Hint: How deep is the right-most branch of the tree below?
Hence how big the tree? Hence how long does the
computation take?

 How can we fix it?

◦ Use a memory table! Same idea as what some of you noticed
about Ackermann, but more powerful with Fibonacci.

Q1-2

 To speed up the recursive calculation of the nth Fibonacci number, just:

1. “Memorize” every solution we find to subproblems, and

2. Before you recursively compute a solution to a subproblem,
look it up in the “memory table”

 So to compute the nth Fibonacci number, construct an array that has n+1
elements, all initialized to 0. Then call Fib(n).

 The base case for Fib(k) remains the same as in the naive solution.

 At the beginning of the recursive step computing Fib(k), see if the kth entry
in the array is 0.

 If it is NOT 0, return it.

 If it IS 0, compute Fib(k) recursively. Then store the computed value in the kth spot
of the array. Then return the computed value.

This is a classic time-space tradeoff
• A deep discovery of computer science

• Studied by “Complexity Theorists”

• Used everyday by software engineers

Tune the solution by varying the amount of storage

space used and the amount of computation performed
Q3

 Two or more methods that call each other
repeatedly
◦ For example, Hofstadter Female and Male

Sequences

◦ Burning Questions for you to figure out now by
coding:

 How often are the sequences different in the first 50
positions? first 500? first 5,000? first 5,000,000?

Q4

If you actually do this, what really
happens is Douglas Hofstadter
appears and talks to you for eight
hours about strange loops.

Let’s see…

Shlemiel the Painter

 Correct – meets specifications

 Easy to understand, modify, write

 Uses reasonable set of resources
◦ Time (runs fast)

◦ Space (main memory)

◦ Hard-drive space

◦ Peripherals

◦ …

 Here we focus on “runs fast” – how much CPU time
does the program / algorithm / problem take?
◦ Others are important too!

 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

◦ Quicksort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Find the smallest number
in the unsorted part

◦ Move it to the end of the
sorted part (making the
sorted part bigger and the
unsorted part smaller)

Repeat until
unsorted part is
empty

 Profiling: collecting data on the run-time
behavior of an algorithm

 How long does selection sort take on:
◦ 10,000 elements?

◦ 20,000 elements?

◦ …

◦ 100,000 elements?

Q5-6

 Results from profiling depend on:
◦ Power of machine you use

 CPU, RAM, etc

◦ Operating system of machine you use

◦ State of machine you use

 What else is running? How much RAM is available? …

◦ What inputs do you choose to run?

 Size of input

 Specific input

 Big-Oh is a mathematical definition that allows

us to:

◦ Determine how fast a program is (in big-Oh terms)

◦ Share results with others in terms that are universally

understood

 Features of big-Oh

◦ Allows paper-and-pencil analysis

◦ Is much easier / faster than profiling

◦ Is a function of the size of the input

◦ Focuses our attention on big inputs

◦ Is machine independent

 Analyzing: calculating the performance of an
algorithm by studying how it works, typically
mathematically

 Typically we want the relative performance as
a function of input size

 Example: For an array of length n, how many
times does selectionSort() call
compareTo()?

Handy Fact

Q7-12

 We care most what happens when n (the size of a
problem) gets large
◦ Is the function basically linear, quadratic, exponential, etc. ?

◦ Consider: Why do we care most about large inputs?

 For example, when n is large (or even moderate):
◦ The difference between n2 and n2 – 3 is negligible.

◦ n3 is pretty large but 2n is REALLY large.

 We say, “selection sort takes on the order of n2 steps”

 Big-Oh gives a formal definition for
“on the order of”

 Formal:
◦ We say that f(n) is O(g(n)) if and only if
◦ there exist constants c and n0 such that
◦ for every n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly proportional

to g(n), for large n

 Example: 7n3 + 24n2 + 3000n + 45 is O(n3)
◦ Because it is ≤ 3,077 × n3 for all n ≥ 1

